AI (LLM/ASR/NLP/CV) × Cyber-Security
謝天謝地;新冠未打疫苗未確診。
人生短短幾個秋,不醉不罷休;
高中大學流浪退學拼到博士。
文科社會組斜槓轉資工領域;
南部流浪英法,再北漂台北。
科技業跨域體驗金融業山頭,
轉角踩坑電信業浮誇新聞稿。
Taiwan’s pioneering and highest deep learning meetup, launched on 2016/11/11 @ 83F, Taipei 101
TonTon has over a decade of experience at the intersection of AI and cybersecurity, specializing in computer vision, natural language processing, speech processing, and x86/Android malware analysis. He has led the adoption of AI solutions and the deployment of cybersecurity R&D in the financial insurance and telecommunications sectors, strengthening operational intelligence and cyber resilience. He has also presented his work at international conferences such as DEF CON, OWASP AppSec USA, RuxCon, and HITCON, and authored multiple academic publications.
He earned his Ph.D. in Computer Science and Information Engineering from National Cheng Kung University, with a dissertation titled “Deep Learning-based Anomaly Analysis in Cyber Threats.” During his doctoral studies, he participated in Taiwan–France and Taiwan–UK collaborative research programs, conducting research at Inria (France) and the University of Essex (UK). He is the founder of Taiwan’s early AI communities, Deep Learning 101 and the Taiwan AI Society, fostering industry–academia collaboration and knowledge sharing in AI and cybersecurity.
TonTon 長期投入人工智慧與網路安全領域,擁有多年的研發與跨域整合經驗,專長涵蓋圖像識別、自然語言處理、語音處理,以及x86/Android惡意程式分析等AI與資安整合應用。他於金融壽險與電信等產業推動AI導入與資安研發落地,強化產業智慧化與資安韌性;並陸續於DEF CON、OWASP AppSec USA、RuxCon與HITCON等國際研討會發表技術研究,亦發表多篇學術論文。
TonTon 畢業於國立成功大學資訊工程學系,博士論文主題為「基於深度學習的網路威脅異常分析」;期間參與「台法聯合團隊交流計畫」及「台灣與英國頂尖大學前期合作研究計畫」,先後赴法國國家信息與自動化研究所與英國艾賽克斯大學進行學術研究合作。他亦為台灣早期人工智慧社群Deep Learning 101與台灣人工智慧社團之發起人,推動AI與資安領域的產學交流與技術推廣。
Responsible for developing information systems tailored for AI and cybersecurity, spanning machine learning, deep learning, and other advanced computational techniques. Projects include dark web threat intelligence platforms, ASR error correction, accounting document OCR, large language & multimodal models, and multi-agent workflow automation systems.
開發專為人工智慧與資安領域量身打造的資訊系統,涵蓋機器學習、深度學習及其他先進運算技術。專案包括暗網威脅情報平台、自動語音辨識錯誤校正、會計憑證 OCR、大型語言與多模態模型,以及多智能體與流程自動化系統。
AI architecture and solution development focusing on natural language processing, OCR, and speech recognition.
人工智慧架構與解決方案開發,專注於自然語言處理、光學字元辨識與語音識別。
論文:基於深度學習的網路威脅異常分析 (Deep learning based anomaly analysis in cyber threats)
指導教授:高宏宇博士(IKM Lab)
Led the design and deployment of machine learning (ML) and deep learning (DL) products, including algorithm development, requirements analysis, architecture design, proprietary dataset creation, model quantization, and optimization, achieving millisecond-level inference latency while reducing model size and enhancing precision.
In cybersecurity, specialized in malware detection, blockchain vulnerability assessment, and cryptocurrency ranking, with research presented at international security conferences such as Defcon, RuxCon, OWASP Appsec, and HITCON.
AI expertise covered speech processing, NLP, and computer vision, with a focus on speech separation, enhancement, speaker recognition, and speech recognition, integrating NER, classification, similarity analysis, and machine reading comprehension to enhance AI assistants’ ability to understand and respond to human intent.
負責規劃與建置機器學習(ML)與深度學習(DL)產品,涵蓋演算法設計、需求分析、技術架構、數據集構建、模型量化與優化,並將模型推論速度優化至毫秒級,同時減少模型大小與提升精準度。
在資安領域,專注於惡意程式檢測、區塊鏈漏洞分析與加密貨幣評級,並於 Defcon, RuxCon, OWASP Appsec, HITCON 等國際安全會議發表研究成果。
人工智慧應用涵蓋語音處理、自然語言處理與電腦視覺,專精於語音分離、語音增強、聲紋辨識與語音識別,並結合 NER、文本分類、相似度分析與機器閱讀理解,讓 AI 機器人能更精確理解與回應人類意圖。
Developed Android security architecture, specializing in malicious program analysis and detection with in-depth research in cybersecurity. Key achievement: APKProbe — a hybrid Android malware probing system combining semantic-based static analysis to bypass code obfuscation and physical cluster-based dynamic analysis to evade anti-sandboxing techniques. Additional responsibilities included delivering custom training, designing solution architectures, conducting cybersecurity research, providing product education and client support, monitoring security equipment, performing incident analysis and response, and conducting digital forensics.
負責開發 Android 安全架構,專注於惡意程式分析與偵測,並深入資安領域研究。核心成果包括 APKProbe:混合式 Android 惡意程式探測系統,結合基於語義的靜態分析以破解代碼混淆,並運用實體叢集機器的動態分析技術以規避反沙箱檢測。 其他工作內容涵蓋客製化教育訓練、資安解決方案架構設計與研究、資安產品培訓與客戶維護、資安設備監控、事件分析與應變,以及數位鑑識。
Developed Acer Cyber Evidence, a cluster-based digital forensics toolkit integrated with Arcsight to enhance threat detection and evidence collection capabilities. Focused on network threat analysis, malware research, and digital forensics technology development. Responsibilities included delivering custom training, product maintenance, solution planning, monitoring security systems, incident analysis and response, and performing digital forensics operations.
開發 Acer Cyber Evidence 數位鑑識叢集服務工具,並與 Arcsight 整合,以強化威脅偵測與證據收集能力。專注於網路威脅分析、惡意程式研究與數位鑑識技術開發,負責客製化教育訓練、產品維護、解決方案規劃,以及資安設備監控、事件分析與應變、數位鑑識作業。
Integrated Diskless Remote Boot in Linux (DRBL) to develop TWMAN, an open-source automated malware behavior analysis toolkit for Windows platforms. Responsible for cybersecurity research, developing malware analysis techniques, and managing operations of the Southern Taiwan Academic Network. Additional duties included delivering custom training, conducting security solution research, and providing technical support.
整合 Linux 無碟遠端啟動(DRBL) 技術,開發 TWMAN(抬丸郎) —— 基於 Windows 平台的開源自動化惡意程式行為分析工具。負責資安研究與惡意程式分析技術開發,並管理南部學術網路的維運。工作內容包含客製化教育訓練、資安解決方案研究與技術支援。